Großer Windkanal
ANIPROP GWK 3

Aufbau, Betriebsarten und Steuerung
Hinweise zur Benutzung der Windkanalwaage
Genauigkeit der Messungen

Version 4.5/2019
Inhaltsverzeichnis

1. KURZBESCHREIBUNG DES KANALS ........................................................................... 5

1. Allgemeine Merkmale ................................................................................................. 5
   1. Arbeitsprinzip und Eigenschaften ............................................................................. 5
   2. Baugruppen und Betriebsarten ............................................................................... 5
   3. Windkanalwaage ..................................................................................................... 7
   4. Steuerung und Messausrüstung .............................................................................. 7
   5. Neuer Typ von Windsensor ab 2020 ........................................................................ 8
   6. Messstrecke mit neuem Windsensor ....................................................................... 8

2. Technischer Aufbau des Windkanals ......................................................................... 9
   1. Antrieb und Steuerung ............................................................................................ 9
   2. Elektrischer Anschluss ............................................................................................ 9
   3. Messstrecke und Windsensor .................................................................................. 13
   4. Windkanalwaage – Support und Messprinzip .......................................................... 14

2. STRÖMUNGSMESSUNGEN ...................................................................................... 15
   1. Strömungsbild des Messquerschnitts im Druckmodus ............................................. 15
   2. Turbulenzgrad im Druckmodus .............................................................................. 16
   3. Überblick über den gesamten Geschwindigkeitsbereich ........................................ 16
   4. Geschwindigkeit und Turbulenzgrad im Saugmodus ............................................... 18
   5. Geschwindigkeit über Steuerspannung im Saugmodus ........................................... 20

3. BETRIEBSARTEN ....................................................................................................... 21
   1. Modus D – Antrieb drückt die Luft durch die Kontraktionsstrecke ......................... 21
   2. Modus S – Antrieb saugt die Luft durch die Kontraktionsstrecke ............................. 21
   3. Hinweise zum Wechsel der Betriebsarten ............................................................... 23
   4. Öffnen und Schließen der Dichtungen zwischen den Segmenten .......................... 24
   5. Betriebsart für niedrigste Geschwindigkeiten ......................................................... 24

4. STEUERUNG DES WINDKANALS UND WINDKANALWAAGE ............................. 25
   1. Regelung der Antriebsmotoren im Handbetrieb ....................................................... 25
   2. Geregelter Betrieb mit Vorgabe der Windgeschwindigkeit ....................................... 25

3. Wägeeinrichtung mit Laborwaagen ......................................................................... 26
   1. Programm Kern Balance Connection .................................................................... 26
   2. Version ab 2017 für zwei Waagen gleichzeitig ...................................................... 26
   3. Einfacher Modus (Messungen nacheinander) ......................................................... 28
   4. Expertenmodus (Messungen gleichzeitig) ............................................................... 29
   5. Einstellungen in der Zusammenfassung .................................................................. 33
   6. Beispielmessung: Auftrieb und Widerstand einer ebenen Platte ............................ 33

4. Wägeeinrichtung mit Kraftsensoren ....................................................................... 35
   1. Mechanischer Aufbau der Wägeeinrichtung ........................................................... 35
   2. Starten der Verbindung mit Bluetooth (Software BlueSoleil) ................................. 36
   3. Software GSVmulti und Hardware GSV-4 BT für Kraftsensoren .............................. 38
   4. Elektrischer Aufbau mit Messverstärker GSV-4BT .................................................. 41

5. ÜBERPRÜFEN UND EICHERN DER WINDKANALWAAGE ..................................... 43
   1. Empfindlichkeit der Kraftsensoren ........................................................................... 43
2. Messprinzip als Basis der Bestimmung der Genauigkeit der Waage ........................................... 47
3. Genauigkeit der Waage ................................................................................................................. 48

6. ANLAGEN ........................................................................................................................................ 50
   1. Separate Anleitungen ................................................................................................................. 50
   2. Verzeichnis mit Installationssoftware auf CD ......................................................................... 50
   3. PDF Dateien auf CD .................................................................................................................. 50

Hinweis. Die Seiten können durch Anklicken direkt aufgerufen werden.
1. Kurzbeschreibung des Kanals

1. Allgemeine Merkmale

1. Arbeitsprinzip und Eigenschaften

Der Kanal ist technisch ein so genannter Eiffelkanal. Die Luft wird aus der Umgebung über einen Einlauf angesaugt und nach der Messstrecke wieder in die Umgebung ausgeblasen. Die Qualität der Strömung in der Messstrecke wird daher auch von der Gleichförmigkeit der zustromenden Luft beeinflusst. Bei voller Geschwindigkeit von 20 m/s, also 72 km/h und damit im Bereich Windstärke 8, werden knapp 2.5 m³/s Luft durch den Laborraum gefördert. Der Kanal sollte daher auf einem festen, frei stehenden Tisch aufgebaut werden, dessen Abstand zu den nächsten Wänden wenigstens 1 m nach allen Seiten beträgt.

Der Kanal ist in seiner Dimensionierung eine Neuentwicklung von ANIPROP GbR. Besonderes Merkmal sind die kurzen Kontraktionsstrecken von 0.5 m Länge, die den Luftstrom auf ¼ seines Querschnitts verengen oder aufweiten. Damit lässt sich der Kanal trotz des Messquerschnitts von 0.35 m x 0.35 m noch in einem normalen Laborraum betreiben. Eine Laborfläche von 4 m x 3 m ist die untere Grenze für die Aufstellung.

2. Baugruppen und Betriebsarten

Der Kanal besteht aus fünf selbsttragenden Baugruppen mit gleichem Bauquerschnitt.

- **Bauquerschnitt.** Der quadratische Querschnitt beträgt bei allen großen Segmenten 0.774 m x 0.774 m zuzüglich 10 mm Höhe durch die Füße unter allen Segmenten.
- **Außenmaße** Breite x Höhe x Länge 0.8 m x 0.8 m x 2.0 m.
- **(1) Antriebseinheit mit Strömungsgleichrichter** Länge 0.4 m.
- **(2) und (4) Kontraktionsstrecken** Länge je 0.5 m.
- **(3) Messstrecke** Länge 0.5 m.
- **(5) Strömungsgleichrichter** Länge 0.09 m.
Zwischen den Segmenten befinden sich in den Rahmen eingelegte Silikondichtungen, die ineinander greifen. Im Saugmodus werden alle fünf Baugruppen in der Reihenfolge 1 bis 5 aneinander gefügt. Es ergibt sich eine Gesamtlänge von ca. 2.0 m.

Prinzipiell ließe die Symmetrie des Aufbaus es zu, alle fünf Baugruppen auch im Druckmodus zu verwenden. Aber der Sinn des Aufbaus im Saugmodus besteht gerade darin, die Störungen durch die vier Antriebsmotoren aus der Strömung zu eliminieren.

- Der Zugriff auf das Messobjekt erfolgt im Saugmodus durch eine Öffnung von 250 mm auf der Oberseite der Messstrecke.

Den üblichen Aufbau im Druckmodus zeigt das nachfolgende Bild.

Der Druckmodus gestattet einen ungehinderten Zugriff auf Messobjekte und ist in vielen Fällen ausreichend zur Bestimmung der Luftkräfte, die auf das Messobjekt wirken.

- Im Saugmodus ergibt sich insbesondere bei niedrigen Geschwindigkeiten eine wohlgeschichtete, laminare Strömung, mit der sich Stromlinien sichtbar machen lassen.
- Der Wechsel vom Saugmodus in den Druckmodus und umgekehrt erfolgt durch Drehen der Antriebseinheit.

Die Kontraktionsstrecke, die im Saugmodus die Strömung einschnürt, wird einschließlich Strömungsgleichrichter im Druckmodus nicht benötigt.
3. Windkanalwaage


Es ist zweckmäßig, bei einem Wechsel der Betriebsart auch die ganze Windkanalwaage zu drehen, wie in obigem Bild gezeigt wird. Dann bleibt die Waage A bzw. der Kraftmesser A stets unterhalb des Messobjektes, das an dem senkrecht aufragenden Arm befestigt wird.

4. Steuerung und Messausrüstung

Der Kanal wird ab 2017 stets mit einer Steuereinheit geliefert, bei der die Windgeschwindigkeit über das Bedienpult mit digitaler Eingabe per Tastatur vorgegeben und von einem Regler dann eingehalten wird (PID-Regler). Der Messwert wird von einem geeignet im Luftstrom positionierten Hitzdrahtanemometer empfangen. Das nebenstehende Bild zeigt die Anzeige der Messeinrichtung, bei der zugleich auch die Temperatur des Luftstroms bestimmt wird. An der Steuereinheit stehen an einer Ausgabebuchse folgende Größen zur Verfügung:

- die Steuerspannung für die Motoren (0 … 10 V)
- die Windgeschwindigkeit, abgebildet auf 0 … 10 V
- die Temperatur, abgebildet auf 0 … 10 V

Standardmäßig besteht die Wägeeinrichtung aus zwei Laborwaagen mit einem Messbereich von 1 kg und Anzeigefeld. Die Kraftsensoren haben dagegen einen Messbereich von 20 N. Die Daten können bei beiden Wägeeinrichtungen am PC erfasst und bearbeitet werden. Bei den Kraftsensoren erfolgt die Anzeige nur am PC.
5. Neuer Typ von Windsensor ab 2020

Der Sensor arbeitet als Heißfilmsensor und zeigt ebenfalls neben der Windgeschwindigkeit auch die Temperatur an. Die Anschlüsse bleiben unverändert. Der Messverstärker zeigt drei Anschlüsse. Der linke Anschluss führt zum eigentlichen Sensor, der mittlere Anschluss wird mit der Steuereinheit UNIcon für die Motoren verbunden. Der dritte rechte Anschluss ist eine USB-Verbindung zum Rechner, die bei Bedarf für die Skalierung des Messverstärkers verwendet werden kann.

6. Messstrecke mit neuem Windsensor
Die nachfolgende Abbildung zeigt die gesamte neue Messstrecke mit Waagen und eingebautem Sensor. Seit 2019 wird die Windkanalwaage in der Ausführung mit


Ein weiterer Vorteil der Anordnung ist, dass beim Wechsel vom Saugmodus zum Druckmodus oder umgekehrt die gesamte Messstrecke einfach gedreht werden kann.
2. Technischer Aufbau des Windkanals

1. Antrieb und Steuerung

Als Antrieb dienen vier Motoren FN030 mit je 0.42 kW Anschlussleistung aus der Serie FE2owlet-ECblue der Firma Ziehl-Abegg. Die Serie ist sehr laufläufig und damit für den Betrieb in einem Labor mit weiteren Arbeitsplätzen gut geeignet. Eine Beschreibung mit den technischen Daten befindet sich auf der beigefügten CD (siehe Anhang).

Die Ansteuerung erfolgt über das Bedienpult UNIcon von Ziehl-Abegg, das neben der Steuerung des Antriebs noch zahlreiche weitere Optionen zulässt. Mit der digitalen Eingabe der gewünschten Windgeschwindigkeit über Tasten können einzelne Arbeitspunkte präzise reproduziert werden.

2. Elektrischer Anschluss

Der elektrische Anschluss an das Stromnetz befindet sich in Stromrichtung gesehen auf der linken Seite des Kanals. Das mitgelieferte Kabel mit Kaltgerätestecker wird an 220 V ~ angeschlossen. Der eingebaute Netzschalter ist zusätzlich mit einer 10 A Feinsicherung versehen.

Die Datenbuchse am Bedienpult hat sechs Pole, deren Bedeutung unter der nebenstehenden Grafik aufgeführt ist.

Stecker und Buchsen\(^1\) sind eindeutig gekennzeichnet durch fortlaufende Nummern neben den einzelnen Kontakten. Bei genauem Hinsehen erkennt man, dass sich Pin 1 unter dem roten Punkt befindet. Bei Aufsicht auf die Buchse läuft die Zählung im Uhrzeigersinn weiter, beim Stecker links entsprechend entgegen dem Uhrzeigersinn.

In das Bedienpult ist zur Versorgung des Windsensors und der Kraftsensoren ein zusätzliches Netzteil eingebaut, das aufgeklappt werden kann.

Anschlüsse an der Steuereinheit (Bedienpult) sind von rechts Windsensor, Stromversorgung der Kraftsensoren und die Weiterleitung der Daten Steuerspannung und Windsensor (von rechts).

<table>
<thead>
<tr>
<th>Pin</th>
<th>Datenbuchse am Bedienpult</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>rot</td>
</tr>
<tr>
<td>2</td>
<td>blau</td>
</tr>
<tr>
<td>3</td>
<td>gelb</td>
</tr>
<tr>
<td>4</td>
<td>grün</td>
</tr>
<tr>
<td>5</td>
<td>rosa</td>
</tr>
<tr>
<td>6</td>
<td>grau</td>
</tr>
</tbody>
</table>

\(^1\) Push-Pull Rundsteckverbinder SF12 der Firma WeiPu. \(\text{http://www.weipuconnector.com/}\)

Das Innere des Bedienpultes UNIcon mit den Anschlüssen für die Sensoren.
I. Versorgung mit Netzspannung

L 220V ~ Netzteil UNIcon
Zuleitung Zusätzliches Netzteil
N 220V ~
PE

II. UNIcon Steuerung (PID-Regler)

Antriebssteuerung A1 E1 GND GND
1 + U_ctrl 2 - U_ctrl 3, 4 U0 5, 6 Temp.

III. Zusätzliches Netzteil

Spannungen
1 + 5 V =
2 0 V zu Pin 1
3 + 12 V =
4 0 V zu Pin 3

Klemm-Verbinder
braun (weiß)
blau (braun)
grün/gelb (grün)
Das voranstehende Bild zeigt das Innere des Bedienpultes. Der Zugang erfolgt über das Lösen der beiden Schrauben links und rechts an der vorderen Abdeckkappe (nicht im Bild), die das Bedienpult abschließt. Zu erkennen ist links die Zuleitung der Netzspannung vom Anschlusskasten am Antrieb. Im Bild ist die Kennzeichnung der Kabeladern für die Netzspannung anstelle der Farben braun, blau und gelb/grün ausnahmsweise weiß, braun und grün.

Daneben kommt die Steuerleitung zu den Motoren des Antriebs mit den Farben weiß für „+“ und braun für „GND“. Beide Leitungen sind im Betrieb mit der Antriebseinheit verbunden. Das nachfolgende Bild zeigt das Bedienpult ohne die vordere Abdeckkappe.

- Es besteht im normalen Betrieb keine Notwendigkeit, das Bedienpult zu öffnen. Sollte dies aber für eine andere Konfiguration der Anschlüsse erforderlich werden, so ist zu beachten: **vor dem Öffnen Netzanschluss trennen.**

<table>
<thead>
<tr>
<th>Netzanschluss</th>
<th>Motorsteuerung</th>
<th>Spannungen</th>
<th>Spannungen</th>
<th>Windsensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 V ~</td>
<td>0, 10 V (1) plus, (2) minus</td>
<td>1 = U_cel, 2 = - U_cel, 3, 4 U0, 5, 6 Temp.</td>
<td>1 = + 5 V, 2 = - 5 V, 3 = + 12 V, 4 = - 12 V</td>
<td>1 = 24 V, 2 = 3, 4 U0, 5, 6 Temp.</td>
</tr>
</tbody>
</table>

**Beschriftung auf der Abdeckkappe des Bedienpultes**

<table>
<thead>
<tr>
<th>Pin</th>
<th>Buchse Windsensor am Bedienpult</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>weiß Versorgung +24 V</td>
</tr>
<tr>
<td>2</td>
<td>braun Versorgung 0 V</td>
</tr>
<tr>
<td>3</td>
<td>gelb Signalwert Windsensor</td>
</tr>
<tr>
<td>4</td>
<td>grün Windsensor GND</td>
</tr>
<tr>
<td>5</td>
<td>rosa Signalwert Temperatursensor</td>
</tr>
<tr>
<td>6</td>
<td>grau Temperatursensor GND</td>
</tr>
</tbody>
</table>

Eine Änderung der Einstellungen des Windsensors ist im Normalbetrieb nicht erforderlich.

Die mittlere der drei Anschlussbuchsen am Bedienpult wird nur verwendet für die Spannungsversorgung der Kraftsensoren. Die nebenstehende Tabelle zeigt die Belegung. Insgesamt liefert das zusätzliche Netzteil die drei Versorgungsspannungen 5 V, 12 V und 24 V.

Der Einbau des zusätzlichen Netzteils in die zuvor praktisch leere Steuereinheit UNIcon ist ohne zusätzliche Belüftungsschlitze erfolgt. Für die elektrische Belastung, die durch die angeschlossenen Sensoren entsteht, ist dies auch nicht erforderlich. Das Netzteil kann tatsächlich höhere Leistungen abgeben. Das Bedienpult muss dazu aber umgebaut und belüftet werden. Deshalb gilt:

- Die Niedervoltanschlüsse des Bedienpultes dürfen nicht mit weiteren Verbrauchern belastet werden, die nennenswert Leistung benötigen. Die Erwärmung des Innenraumes des Bedienpultes ist im Zweifelsfall zu prüfen mit einem Temperaturfühler und sollte im Dauerbetrieb eines Labortages 40 °C nicht übersteigen. **Maximal zulässige Dauertemperatur für UNIcon: 55 °C.**

3. Messstrecke und Windsensor

Das als Messstrecke bezeichnete Segment erfüllt den doppelten Zweck der Führung der Strömung aus der Kontraktionsstrecke (Modus D) und in Gegenrichtung als Raum für die Messungen (Modus S). Die Innenmaße sind 0.35 m x 0.35 m x 0.5 m. Die Seitenwände bestehen wie alle anderen Wände aus 3 mm dicken Makrolonscheiben.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Niederspannungsbuchse am Bedienpult</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>violett +5 V =</td>
</tr>
<tr>
<td>2</td>
<td>rosa 0 V zu Pin 1</td>
</tr>
<tr>
<td>3</td>
<td>dunkelbraun +12 V =</td>
</tr>
<tr>
<td>4</td>
<td>hellbraun 0 V zu Pin 3</td>
</tr>
</tbody>
</table>

Durchgriff 250 mm

Messstrecke mit Windsensor im Saugmodus, Windkanalwaage mit Kraftsensoren
In die Seitenwände sind gegenüber liegend zwei Öffnungen mit 15 mm Durchmesser eingelassen, die zur Innenseite im Druckmodus bündig zur Wand verschlossen sind. Durch diese Öffnungen wird das Messobjekt mit der Windkanalwaage verbunden, wenn der Kanal mit geschlossener Messstrecke (Saugmodus) betrieben wird.

Der Zugang zur Messstrecke für den Zugriff auf Messobjekte erfolgt über den mit einem Deckel verschließbaren Durchlass von 250 mm Durchmesser (im Bild auf der vorhergehenden Seite nicht sichtbar). Die Halterung des Messobjektes wird im Betriebsmodus S durch die beiden Öffnungen zu beiden Seiten der Messstrecke herausgeführt zum Support (nächster Abschnitt).

### 4. Windkanalwaage – Support und Messprinzip

*Windkanalwaage* ist die Kurzbezeichnung für die Einheit, die aus zwei Elementen besteht:

**Wägeeinrichtung** mit zwei Waagen oder zwei Kraftsensoren für die Messung der Komponenten Auftrieb $F_A$ und Widerstand $F_W$ der Luftkraft, die bei vorhandener Strömung auf das Messobjekt wirkt.

**Support** für das Messobjekt, dessen Merkmal die L-förmige, gleichschenkelige Konstruktion ist, über die das Messobjekt auf den beiden Waagen ruht. Zwischen den beiden Seitenteilen des Supports befindet sich die Aufhängung für das Messobjekt. Die Aufhängung sind Achsen (Durchmesser $d = 6$ mm) mit Winkelanzeige für die Neigung gegenüber der Strömung (Anstellwinkel).


- Im Ergebnis misst die vordere Waage bzw. der vordere Kraftsensor Auftrieb und Widerstand, die hintere Waage bzw. der hintere Kraftmesser nur den Widerstand. Man muss zur Berechnung des Auftriebs also vom vorderen Messwert stets zunächst den Widerstand abziehen.
2. Strömungsmessungen

1. Strömungsbild des Messquerschnitts im Druckmodus

Der Betrieb des Windkanals im Druckmodus ist die einfachste Möglichkeit zur Bestimmung der Luftkraft auf ein Messobjekt. Der kurze und einfache Aufbau des Windkanals bedeutet, dass auch wenig Einfluss genommen werden kann auf die Erzeugung einer hochwertigen laminaren Strömung. Das folgende Bild zeigt die Geschwindigkeitsverteilung im Messquerschnitt am Ende der Messstrecke, die bei diesem Experiment nur die Funktion einer Windführung hat.


Es stellt sich bei den örtlichen Schwankungen der Geschwindigkeit die Frage nach der „richtigen“ Angabe der Geschwindigkeit. Die ergibt sich aus der Bestimmung des Volumenstroms, also der Luftmenge, die insgesamt durch den Messquerschnitt je Sekunde strömt. Teilt man diesen Volumenstrom, gemessen in m³/s durch die Messfläche, dann ergibt sich die richtige mittlere Geschwindigkeit in m/s. Da die etwas höheren Geschwindigkeiten in den Ecken aber einen zu hohen Wert für den Bereich geben, in dem die Messungen stattfinden, ist anstelle des Messquerschnitts von 350 mm x 350 mm ein Zentralbereich von 200 mm x 200 mm für die Bestimmung des Volumenstroms ausgewählt worden.

2. Turbulenzgrad im Druckmodus


Die beiden voran stehenden Grafiken gelten für den mittleren Betriebsbereich um 10 m/s herum. Es zeigt sich aber, dass die Topologie der Konturlinien sich über den ganzen Geschwindigkeitsbereich des Kanals nicht wesentlich ändert.

3. Überblick über den gesamten Geschwindigkeitsbereich

Auf der folgenden Seite sind noch für zwei weitere Geschwindigkeiten 5 m/s und 15 m/s die Konturlinien der Geschwindigkeit angegeben. Auch der Turbulenzgrad ändert sich nicht sehr, ist aber hier nicht abgebildet. Mit höherer Geschwindigkeit nimmt er noch etwas ab.

4. Geschwindigkeit und Turbulenzgrad im Saugmodus

In den vorhergehenden Versionen dieser Beschreibung wurde das Problem eines Gradienten im Geschwindigkeitsfeld der Messstrecke genannt. Die Vermutung, dass die Ursache das Messverfahren selbst sein könnte, hat sich bei Nachmessungen inzwischen bestätigt. Nachfolgend sind zwei Messungen zu sehen, die mit unterschiedlichen Messanordnungen stattfanden.

Messung mit Schlitz für die Sonde am oberen Rand.

Messung mit Schlitz für die Sonde seitlich links.

Eine geeignete Messtechnik muss so beschaffen sein, dass der Sensor deutlich stromauf misst gegenüber der Stelle, an der die Sonde in den Windkanal eingeführt wird. Nachfolgend ist ein synthetisches Bild mit gespiegelter rechter Seite der Messung voranstehend rechts. Die Skala für das Inkrement der Höhenlinien ist 0.5 auf 0.2 herabgesetzt worden.

Auf der folgenden Seite ist die Messanordnung abgebildet, bei der die Sonde seitlich in die Messstrecke eingeführt wird.

Seite 18
GWK3 mit Traversiereinrichtung ANIPROP TRV1 – Bestehende Messtechnik

Turbulenzgrad bei 4 m/s liegt bei 0.4 % (geeignet für Stromlinienaufnahmen).
5. Geschwindigkeit über Steuerspannung im Saugmodus

3. Betriebsarten

1. Modus D – Antrieb drückt die Luft durch die Kontraktionsstrecke

Zu erkennen ist oben in der Schrägaufsicht der in die Antriebseinheit eingebaute Gleichrichter. Das nebenstehende Bild zeigt die Front. Der Strömungsgleichrichter ist eine 50 mm tiefe Wabenstruktur aus Aluminium, die den Drall aus der Strömung herausnehmen soll, der durch die vier Antriebsventilatoren entsteht. Die einzelnen Waben haben eine Kantenlänge von rund 12 mm und sind zur Dämpfung der Eigenschwingungen der Struktur pulverbeschichtet. Im Modus D dient die Messstrecke nur als Windführung und gestattet gleichzeitig die Messung der Geschwindigkeit mit dem Windsensor. Die Strömung trifft am Austrittsportal der Messstrecke bzw. Windführung auf die Windkanalwaage mit ihren beiden Messwaagen.

2. Modus S – Antrieb saugt die Luft durch die Kontraktionsstrecke

Der Aufbau ist eine geschlossene Luftführung mit Messobjekten innerhalb der geschlossenen Messstrecke. Der Zugang erfolgt durch Deckenöffnung mit 250 mm Durchmesser.

Für diese Betriebsart muss der Antrieb gegenüber dem Modus D gedreht werden. Die Luft wird über den zweiten Strömungsgleichrichter ganz rechts im Bild angesaugt und kontrahiert auf den Querschnitt der Messstrecke.

Aufbau des Windkanals GWK3 in der Betriebsart S (Saugmodus) – Zerlegungspunkte

Wichtiger Hinweis: Die Antriebseinheit wiegt 42 kg und darf deshalb nur von zwei Erwachsenen getragen oder gedreht werden.

Aufbau und Zerlegen im Modus S. Im obigen Bild der Betriebsart S zeigen die roten Pfeile \( \rightarrow \), an welchen Stellen der Kanal zusammengefügt bzw. wieder zerlegt werden muss. Die Schrauben sollten an der Stelle, auf die der Pfeil weist, gelöst und nach Wegdrehen der Lasche wieder in den vorhandenen Nutenstein mit leichtem Andrehen eingesetzt werden. Die Lasche bleibt auf der Seite mit dem grünen Punkt \( \bullet \). Die grünen Pfeile \( \leftarrow \) weisen auf Montagepunkte, die einmalig zusammengefügt werden.


- Ein Messobjekt, auch die beigefügte Tragfläche, kann über den Eingriff auf der Oberseite der Messstrecke aus- und eingebaut werden. Ein Auseinanderbauen des Kanals ist dazu nicht erforderlich.

---


Hinweis: Auf der Seite index.php wird automatisch eine Bildershow eingeblendet, die man abwarten sollte.

Seite 22
3. Hinweise zum Wechsel der Betriebsarten

Die zweite (im Bild auf der vorhergehenden Seite die rechte) Kontraktionsstrecke und auch der Strömungsgleichrichter werden in der Betriebsart D nicht benötigt. Die beiden Segmente werden zweckmäßigerverweise nur für die Betriebsart S auf den Labortisch gestellt.

Aus Handhabungs- und Platzgründen sollte

- für den **Wechsel von D nach S** erst die Antriebseinheit gedreht, dann die zweite Kontraktionsstrecke mit Gleichrichter zugestellt werden,
- für den **Wechsel S nach D** erst die zweite Kontraktionsstrecke und der Gleichrichter entfernt, dann der Antrieb gedreht werden.

Damit die Windkanalwaage das Messobjekt in der geschlossenen Messstrecke tragen kann, muss zunächst das Messobjekt ausgebaut und die Windkanalwaage unter die Messstrecke geschoben werden.

(1) Ausbauen des Messobjekts
(2) Verschieben der Windkanalwaage

Dazu wird die Stiftschraube (senkrechter gelber Pfeil linkes Bild) gelöst und die Halteachse des Messobjekts nach rechts so weit in die durchgehende Buchse geschoben, bis links die Halteachse nicht mehr in ihrer Lagerbuchse steckt (gelber Pfeil linkes Bild). Anschließend wird die Halteachse vorsichtig nach links aus der Lagerbuchse wieder herausgezogen, wobei die linke Achsseite neben der Lagerbuchse mit Stiftschraube bleibt (roter Pfeil linkes Bild).

Die lichte Weite der beiden Arme der Windkanalwaage ist so bemessen (400 mm), dass die ganze Vorrichtung genau vor den beiden Öffnungen der Messstrecke positioniert werden kann.

- Die beiden Verschlüsse müssen natürlich vorher entfernt werden!

**Wichtig.** Die beiden Waagen erst anheben(rote Pfeile rechtes Bild) und dann versetzen (gelber, strichlinderter Pfeil rechts Bild). Beim Anheben bemerkt man, dass die Querachsen in Kugellagern gelagert sind, die Waagen also sofort und leichtgängig zu pendeln beginnen. Nach der genauen Positionierung wird das Messobjekt in umgekehrter Reihenfolge wieder eingesetzt. Die **Ableseskala** für die Neigung des Messobjekts (Anstellwinkel) ist in Grad skaliert. Der Strich über die ganze Skalenscheibe hinweg dient der Ausrichtung des Messobjekts mit der Skala. Erst nach dem Ausrichten wird die Stiftschraube fester angezogen.
4. Öffnen und Schließen der Dichtungen zwischen den Segmenten


5. Betriebsart für niedrigste Geschwindigkeiten


- Bei den niedrigen Geschwindigkeiten unter 1 m/s ist zu bedenken, dass der Geschwindigkeitssensor die Geschwindigkeit nicht mehr genau und schließlich gar nicht mehr anzeigt.
- Auch der Antrieb muss über die Steuereinheit im manuellen Betrieb geregelt werden, da der Sensor Werte unterhalb der Schwelle anzeigt, die für die automatische Geschwindigkeitsregelung erforderlich sind.
4. Steuerung des Windkanals und Windkanalwaage

1. Regelung der Antriebsmotoren im Handbetrieb

Wenn der Windsensor nicht angeschlossen ist, kann der Windkanal auch manuell gesteuert werden.

Hier folgen nur die wichtigen Schritte. Weitere Informationen finden sich in der Betriebsanleitung.

1. **Einschalten** der Stromversorgung
   - Anzeige oben links *Info* und im Rahmen 0 % Aussteuerung
2. **Beide ESC-Tasten** ⇧ und ⇧ gleichzeitig drücken.
   - Anzeige oben links *Hauptmenü* und im Rahmen *Start* unterlegt
3. Mit dem linken Cursor ⇧ auf *IO Setup* gehen.
4. Auf P drücken. Es erscheint im Rahmen 1. Regelsignal
5. Den linken Cursor ⇧ drücken. Es erscheint das nebenstehende Bild mit 0.0 V / A1 min. A1 ist der eine der beiden Analogausgänge der UNIcon Steuerung für eine Spannungsregelung im Bereich 0 – 10 V.

   In diesem Fenster findet die gesamte Motorsteuerung statt.
6. Auf P drücken. Anzeige 0.0 V beginnt zu blinken. Mit dem rechten Cursor ⇧ einen höheren Wert 3.0 V einstellen.
7. Auf P drücken. Das Blinken verschwindet. **Die Windgeschwindigkeit verändert sich.**

   **Hinweis 1.** Dauerhaftes Drücken von ⇧ oder ⇧ verändert den Wert automatisch bis zum Loslassen.

2. Geregelter Betrieb mit Vorgabe der Windgeschwindigkeit

Der geregelter Betrieb mit Vorgabe der Geschwindigkeit findet statt in der Betriebsart 6.01 des Universalregelmoduls UNIcon der Firma Ziehl-Abegg, von der auch die Antriebsmotoren stammen. Die Firma gibt eine Kurzanleitung für das Bedienpult heraus, die Teil der Lieferung ist. Unter folgender Bezeichnung liegt das Dokument auch auf der Begleit-CD:

Kurzanleitung_UNIcon_MODBUS_Master_2013-11-11_DE_de.pdf

Die Betriebsart 6.01 geht davon aus, dass von einem Sensor die Windgeschwindigkeit als Messgröße zwischen 0 und 10 V geliefert wird. Diese Spannung wird an den Eingang E1 gegeben. Der Benutzer stellt die gewünschte Windgeschwindigkeit als Sollwert ein im Bereich 0 bis 20 m/s. Der Ausgang A1 liefert nun die Steuerspannung, die zu der Windgeschwindigkeit passt. Der Regler, ein so genannter PID-Regler, sorgt in einem Regelkreis dafür, dass sich die gemessene Windgeschwindigkeit, der Istwert, dem Sollwert nähert.
3. Wägeeinrichtung mit Laborwaagen

1. Program Kern Balance Connection


2. Version ab 2017 für zwei Waagen gleichzeitig


Seit 2017 wird der GWK3 bei der Ausstattung mit zwei Waagen mit einer neuen Software der Firma Kern angeboten, die zwei so genannte virtuelle COM Ports (VCP) gleichzeitig verwalten kann. Die Software kann natürlich auch reale COM Ports verwalten, falls ein Rechner noch mit zwei solchen seriellen Schnittstellen ausgerüstet sein sollte. Das ist in aller Regel bei neueren Rechnern nicht mehr der Fall.


Wichtiger Hinweis: Montagearbeiten mit den Waagen immer in eingeschaltetem Zustand vornehmen, um Überlastung zu erkennen.

---

4 Der abgebildete Adapter ist beschafft worden über folgenden Link: http://www.waagen.lu/datenerfassung/schnittstellenwandler-rs-232-usb-ftdi.html
5 Der Link für den Treiber lautet http://www.ftdichip.com/Drivers/VCP.htm
VCP Adapter für zwei Kern Waagen

Anzeige der Adapter in der Geräteliste (Windows 7, 64bit)

Zugeordneter COM Port unter den Eigenschaften von Gerät US232R

Das Hauptfenster der Software Kern Balance Connection:

Das Bild zeigt das Hauptfenster der Software, die eine Reihe von Möglichkeiten bietet, die Erfassung von Daten zu automatisieren. Es ist sehr empfehlenswert, gleich zu Beginn eine Excel-

---

Datei zu öffnen, um dorthin die Daten zu schreiben. Die Verknüpfung erfolgt sehr benutzerfreundlich einfach dadurch, dass das Icon rechts neben Suchwerkzeug im oberen linken Feld angeklickt und auf das geöffnete Fenster mit der Excel-Datei gezogen wird. Der Name der Datei erscheint dann automatisch im dritten Feld von oben unterhalb der Bezeichnung Fenstertext. Dieser einfache Weg wird zunächst beschrieben.

3. Einfacher Modus (Messungen nacheinander)


Sind zwei Waagen mit zwei Adaptern angeschlossen, dann muss die jeweilige Waage durch Auswahl des COM Anschlusses ausgewählt werden. Man kann diese manuelle Zuordnung auch automatisieren und die Daten von zwei Waagen gleichzeitig abrufen und in eine Excel-Datei eintragen lassen. Dies verlangt die Benutzung der Software im Expertenmodus und wird im nachfolgenden Abschnitt erläutert.

<table>
<thead>
<tr>
<th>Wert</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.4</td>
<td>18:20:21</td>
</tr>
<tr>
<td>224.4</td>
<td>18:20:21</td>
</tr>
<tr>
<td>224.4</td>
<td>18:20:21</td>
</tr>
<tr>
<td>224.4</td>
<td>18:20:22</td>
</tr>
<tr>
<td>224.4</td>
<td>18:20:22</td>
</tr>
<tr>
<td>224.4</td>
<td>18:20:23</td>
</tr>
<tr>
<td>224.4</td>
<td>18:20:23</td>
</tr>
<tr>
<td>224.4</td>
<td>18:20:24</td>
</tr>
</tbody>
</table>

Man kann die Daten auch mit der maximalen Auslesegeschwindigkeit aufnehmen, wenn man statt Taste die Option Timer wählt und die Zeit auf 00:00:00.200 stellt. 0.2 ist der kleinste Wert, sonst erscheint rechts neben dem Feld eine Fehlermeldung. Dies ist zweckmäßig, wenn man einen Wert durch Mittelung über einige individuelle Messungen bestimmen möchte.

- Die Einstellung der Makrobefehle erfolgt mittels Drücken der jeweiligen Taste auf der Tastatur des Computers, nicht durch Schreiben im Feld!

Die obige Tabelle entsteht mit den daneben stehenden Einstellungen. Danach ist auf Taste zurückgeschaltet worden. Aus der Datenerfassung ergibt sich, dass die Scanrate tatsächlich 3.3 scans/s beträgt. Das Einstellen des Timers ist etwas umständlich. Folgender Weg funktioniert:

1. Timer wird angeklickt und danach Tarieren.

Jetzt besteht der Zugriff auf die Zahlen und 0.200 kann eingestellt werden.

2. Auf instabiler Wert zurücksetzen
3. Auf Taste zurücksetzen.

Das funktioniert aber nicht immer gleich, sondern die alte Funktionsauswahl wird manchmal beibehalten.
4. Expertenmodus (Messungen gleichzeitig)

Zum Expertenmodus gelangt man, wenn man das **Icon mit dem „+“ ganz links neben der Flagge auf der Fußleiste anklickt.** In der nachfolgenden Beschreibung wird erläutert, wie man bei zwei Waagen die Daten gleichzeitig nebeneinander in eine Excel-Datei schreibt. Dies muss in der gebotenen Kürze geschehen. Bei der Neubeschaffung eines GWK3 ist die Einrichtung Teil der eintägigen Einweisung.

- Die Software im Expertenmodus verlangt zur eigenständigen Handhabung eine sorgfältige Einarbeitung. Die Möglichkeiten zur Gestaltung sind so vielfältig, dass nachfolgend nur ein einziger spezieller Weg beschrieben wird, der sich im Labor von ANIPROP GbR als zweckmäßig erwiesen hat.

Es gibt vier Hauptfenster und das Fenster mit dem Logo der Firma:

- Geräte und Protokolle
- Schnittstellen
- Ausgabemethoden
- Auslöser (für den Datenfluss)

Eingerichtet als **Geräte** werden die beiden Waagen des Typs 440 mit den Bezeichnungen Waage A (für Auftrieb und Widerstand) und Waage B für Widerstand. Das zu diesen Waagen gehörende **Protokoll** mit der Kürzel 440 ist bereits Teil der Software und muss nur aktiviert werden. Als **Schnittstellen** werden zwei COM Ports benötigt, die als eingerichtet

Als **Ausbabemethoden** sind zunächst eine Großanzeige für jede Waage und die grafische Darstellung der Messwerte über der Zeit vorgesehen. Diese werden für jede Waage separat eingerichtet. Die Anzeigen erscheinen als eigene Fenster und können frei angeordnet werden:

![Diagramm der Messwerte](image)

Leider wird der Name für die einzelnen Fenster nicht mit in die Anzeige übernommen. Die wichtigste Ausgabemethode für die Abspeicherung der Daten im Hintergrund ist die Methode „Excel-Tabelle“. Diese Option wird explizit angegeben im Aufklappmenü, das beim Anklicken des grünen Plus bei **Hinzufügen** erscheint.


![Speichern unter bestätigen](image)

und ist etwas irritierend. Aber es wird nur der Name übernommen und die Datei wird nicht neu eingerichtet. Vorhandene Daten bleiben erhalten. Das Ausgabemuster gibt zum Index 0, 1, 2, 3 u.s.w. für die jeweiligen Spalten an, welche Daten in welchem Format ausgeschrieben werden. Die Angabe „Index“ bezieht sich auf die Datenspalten. Die Nummern werden automatisch generiert. „0“ ist die aktuelle Spalte, in der der Cursor steht. Als Ausgabemuster ist angegeben:

<table>
<thead>
<tr>
<th>Index</th>
<th>Ausgabemuster für diese Spalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><code>&lt;&lt;&lt;pcTime.h&gt;&gt;&gt;:&lt;&lt;&lt;pcTime.m&gt;&gt;&gt;</code></td>
</tr>
<tr>
<td>1</td>
<td><code>&lt;&lt;&lt;pcTime.s&gt;&gt;&gt;:&lt;&lt;&lt;pcTime.ms&gt;&gt;&gt;</code></td>
</tr>
<tr>
<td>2</td>
<td><code>&lt;&lt;&lt;weight1.value&gt;&gt;&gt;</code></td>
</tr>
<tr>
<td>3</td>
<td><code>&lt;&lt;&lt;weight2.value&gt;&gt;&gt;</code></td>
</tr>
</tbody>
</table>

Das zugehörige Ergebnis in Tabelle3 der Excel-Datei sieht folgendermaßen aus:

<table>
<thead>
<tr>
<th>Uhrzeit</th>
<th>Messzeit</th>
<th>Waage A</th>
<th>Waage B</th>
</tr>
</thead>
<tbody>
<tr>
<td>hh:mm</td>
<td>[s]</td>
<td>-(A+W) [g]</td>
<td>W [g]</td>
</tr>
<tr>
<td>alfa_S [deg]</td>
<td>10</td>
<td>Werte</td>
<td>Werte</td>
</tr>
<tr>
<td>U0 [m/s]</td>
<td>8</td>
<td>Werte</td>
<td>Werte</td>
</tr>
<tr>
<td>14:37</td>
<td>3.600</td>
<td>-15.78</td>
<td>9.30</td>
</tr>
<tr>
<td>14:37</td>
<td>3.940</td>
<td>-15.86</td>
<td>9.36</td>
</tr>
<tr>
<td>14:37</td>
<td>4.360</td>
<td>-15.79</td>
<td>9.36</td>
</tr>
<tr>
<td>14:37</td>
<td>4.770</td>
<td>-15.77</td>
<td>9.32</td>
</tr>
<tr>
<td>14:37</td>
<td>6.330</td>
<td>-15.54</td>
<td>9.46</td>
</tr>
<tr>
<td>14:37</td>
<td>6.490</td>
<td>-15.54</td>
<td>9.46</td>
</tr>
<tr>
<td>14:37</td>
<td>7.140</td>
<td>-15.65</td>
<td>9.32</td>
</tr>
<tr>
<td>14:37</td>
<td>7.510</td>
<td>-15.59</td>
<td>9.32</td>
</tr>
<tr>
<td>14:37</td>
<td>7.910</td>
<td>-15.49</td>
<td>9.32</td>
</tr>
</tbody>
</table>


Für die Waage B erfolgt die analoge Einstellung. Der ausgelöste Befehl, der fortlaufend gesendet werden, lautet „Instabiler Wert“. Das ist ein Merkmal der Waagen, dass sie für einen stabilen Wert eine etwas längere Messzeit benötigen. Da aber durch die Erschütterungen der Messobjekte im Luftstrom eine konstante statische Belastung der Waagen ohnehin nicht eintritt, würde „Stabiler Wert“ im ungünstigen Fall gar keine Daten liefern. Der Timer läuft „24/7“ wie man sagt und sendet alle 0.5 s eine Anforderung für Daten. Viel schneller arbeiten die Waagen ohnehin nicht.


Schließlich muss noch erreicht werden, dass die Eintragung der Daten in eine Zeile der Excel-Datei synchron erfolgt. Dies wird über die Option „Filter“ bei den Ausgabemethoden erreicht:

Die Option „Zeitliche Synchronisierung“ mit der Zeitnische 600 ms bewirkt, dass Signale innerhalb dieses Zeitfensters als gleichzeitig angesehen und in eine Zeile geschrieben werden. Falls dies nicht zutrifft, fehlt auch schon einmal ein Wert in einer Zeile.

- Auch wenn die Datenströme fließen, so kann jede Ausgabemethode für sich angehalten werden. Dies ist für das Schreiben der Daten in die Excel-Tabelle wichtig. Denn eine Messung z.B. bei verschiedenen Anstellwinkeln läuft so ab, dass nur der Datenzufluss in die Tabelle angehalten wird, bis ein neuer Anstellwinkel eingestellt und eine neue Zelle für den Beginn des Ausschreiben ausgewählt ist. Dann werden so viele Wertezeilen abgerufen, wie man für die Mittelwertbildung haben möchte. Praktisch lässt man immer einige Zeilen mehr ausschreiben als man für die Mittelwertbildung benötigt.
5. Einstellungen in der Zusammenfassung

Zusammenfassend geben die besprochenen Einstellungen das folgende Bild:


Auf den Seiten von aniprop.de ist eine Excel-Datei\(^7\) angegeben, in der die Messung einer Polaren mit allen Messdaten und der Auswertung vollständig enthalten ist. **Messdaten**\(^8\) und **Auswertung** sind auch noch einmal als PDF-Dateien vorhanden. Nachfolgend sind die aerodynamischen Beiwerte der mitgelieferten ebenen Platte für die Geschwindigkeit 12 m/s über dem Anstellwinkel und als Polare dargestellt.

---

\(^7\) Der Link lautet: [http://www.aniprop.de/sites/default/files/Messung&Auswertung_GWK3_EbenePlatte_12ms.xlsx](http://www.aniprop.de/sites/default/files/Messung&Auswertung_GWK3_EbenePlatte_12ms.xlsx)

\(^8\) Die Links lauten: [http://www.aniprop.de/sites/default/files/Messung_GWK3_EbenePlatte_12ms.pdf](http://www.aniprop.de/sites/default/files/Messung_GWK3_EbenePlatte_12ms.pdf) und [http://www.aniprop.de/sites/default/files/Auswertung_GWK3_EbenePlatte_12ms.pdf](http://www.aniprop.de/sites/default/files/Auswertung_GWK3_EbenePlatte_12ms.pdf)
Waage GWK3 - Ebene Platte
Messwerte: Mittel <x> über 12 Werte - Hinterkante auf der Oberseite angeschrägt
$U_0 = 12 \, \text{m/s}$ - Kern Laborwaage Typ 440-45N, 1 kg

-1.500
-1.000
-500
0
500
1,000
1,500
2,000
-40 -30 -20 -10 0 10 20 30 40
Kraft [mN]

-40 -30 -20 -10 0 10 20 30 40
Anstellwinkel $\alpha_S$ [deg]

-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Auftriebsbeiwert [-]

Widerstandsbeiwert [-]

Polare große Platte GWK3

Waage GWK3 - Ebene Platte
Messwerte: Mittel <x> über 12 Werte - Hinterkante auf der Oberseite angeschrägt
$U_0 = 12 \, \text{m/s}$ - Kern Laborwaage Typ 440-45N, 1 kg

Polare große Platte GWK3
4. Wägeeinrichtung mit Kraftsensoren

1. Mechanischer Aufbau der Wägeeinrichtung


Das obere Bild zeigt vorderen und hinteren Kraftsensor 20 N mit der Grundplatte der Wägeeinrichtung. Das Kabel liefert von der Steuereinheit des Windkanals die Spannungsversorgung, die für den verwendeten Typ von Kraftsensor 5 V erfordert. In der Box befindet sich der Messverstärker für die beiden Kraftsensoren. Die Daten werden über Bluetooth an einen PC gesandt. Das linke untere Bild zeigt den vorderen Kraftsensor, das rechte untere Bild die Anzeige der Daten mit der Software GSVmulti, die im nachfolgenden Abschnitt beschrieben wird.

**Wichtiger Hinweis: Montagearbeiten mit den Kraftsensoren immer mit Anzeige der Belastung vornehmen, um Überlastung zu erkennen.**

Zuvor muss die Kommunikationssoftware installiert und gestartet sein.
2. Starten der Verbindung mit Bluetooth (Software BlueSoleil)


- Während der Installation wird auch die Software BlueSoleil cPhone installiert, wenn die Installation über die Deaktivierung des zugehörigen Häckchens nicht unterbunden wird. Dieser Teil der Software wird nicht benötigt.

Bild der Software, wenn alle Verbindungen gelöscht sind:

Mit rechter Maustaste auf die Sonne in der Mitte (als Symbol für den eigenen Rechner). Das Auswahlfenster unten erscheint. **Geräte suchen** auswählen.

- Geräte suchen
- Bluetooth ausschalten
- Eigenschaften …

Der Messverstärker muss schon eingeschaltet sein. Dann findet sich zunächst folgende Information (Bild nachfolgend links)

Auf das Fragezeichen gehen und rechte Maustaste drücken:

- Services suchen
- Gerätenamen abrufen
- Koppeln
- Löschen
- Eigenschaften …
- Umbenennen
- More bluetooth devices

**Gerätenamen abrufen** drücken. Das Ergebnis zeigt den Namen BAmobile.
Jetzt Services suchen.

Es erscheint das Fenster, das unter dem nebenstehenden Bild gezeigt wird.

Hier das Passwort 0000 eingeben. Wieder rechte Maustaste für Optionen.

Diesmal erscheint eine leicht veränderte Liste. Verbinden Serieller Bluetooth-Port wählen. Es erscheint zwischen dem Gerät und der Sonne eine gestrichelte Linie, auf der ein roter Punkt hin und her wandert (Bild nächste Seite).

- Services suchen
- Verbinden Serieller Bluetooth-Port
- Koppeln
- Löschen
- Eigenschaften …
- Umbenennen
- More bluetooth devices

Damit ist die Verbindung hergestellt. Drückt man jetzt mit der rechten Maustaste auf das externe Gerät, dann erscheint ein erneut verändertes Auswahlmenü:

- Services suchen
- Trennen Serieller Bluetooth-Port (COM23)
- Koppeln
- Löschen
- Eigenschaften …
- Umbenennen
- More bluetooth devices

Den angegebenen COM Port gibt man als Verbindung in der Software GSVmulti an.
Wenn nacheinander verschiedene GSV-4BT aufgerufen werden, erscheint unter Umständen eine Warnung ähnlich dem nebenstehenden Fenster. Die Warnung kann ignoriert werden. Aber die Eichdaten der Sensoren sind zu prüfen.

Sind die Verbindungsdaten einmal in einer Session innerhalb von GSVmulti gespeichert worden, dann öffnet die Software beim Aufrufen automatisch die Verbindung zum Messverstärker.

3. Software GSVmulti und Hardware GSV-4 BT für Kraftsensoren


Eine typische Messung am Kanal zeigt das folgende Bild. Die Anzeige für die Windgeschwindigkeit ist bereits skaliert und zeigt die tatsächliche Windgeschwindigkeit, die auch der Windsensor am Display anzeigt. Der Windkanal ist in drei Schritten von 0 bis 20 m/s hochgefahren worden. Als Messobjekt ist eine ebene Platte mit Anstellwinkel eingespannt:

<table>
<thead>
<tr>
<th>Kanal</th>
<th>Messgröße</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kraftsensor 1 (A+W)</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>Kraftsensor 2 (W)</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>Windgeschwindigkeit Uₜ</td>
<td>m/s</td>
</tr>
<tr>
<td>4</td>
<td>Steuerspannung U_ctrl</td>
<td>V</td>
</tr>
</tbody>
</table>

Die Daten sind gleichzeitig aufgezeichnet worden und erhalten einen systematischen Namen, in diesem Fall 27_11_17-22_54_50.tdms. Mit Open File Monitor kann man sich die Datei ansehen:

Da die Software GVSmulti auf Labview aufbaut, erkennt man oben rechts die für Labview typischen Möglichkeiten der genauen Datenanalyse durch Auswahl und Spreizen von Datenbereichen.
Der erste Reiter im nebenstehenden Bild *Properties* liefert einige technische Informationen zu Erzeugung der Datei. Der zweite Reiter *Values (table)* zeigt die Daten als Zahlen tafel. Die Anzahl der Daten, die man ansehen möchte, lässt sich mit *Settings* ... unten am Fuß der Grafik noch einschränken. Die Option *Export* führt auf die Auswahl Damit kann man die Daten u.a. in eine Exceldatei exportieren. Microsoft Excel bietet bekanntlich zahlreiche Möglichkeiten der grafischen Darstellung.

- Man kann aber auch direkt die *.tdms* Datei mit Microsoft Excel öffnen und umbenennen. Dieser Weg hat den Vorteil, dass auch die Dateiinformationen in der Datei enthalten sind.

Zu den Dateiinformationen zählen das vollständige Datum von Beginn bis Ende der Messung und die Scanrate. Die Datei enthält zwei Blätter. Das erste Blatt ist mit dem systematischen Namen der Datei benannt, das zweite Blatt enthält die Messdaten in voller Auflösung:

Die Informationen in root erstrecken sich über einen längeren Spaltenbereich und sind deshalb nicht ganz abgebildet. Link: [https://www.me-systeme.de/de/software/gsvmulti](https://www.me-systeme.de/de/software/gsvmulti)
4. Elektrischer Aufbau mit Messverstärker GSV-4BT


![Anschlusskasten](image)

An der Frontseite befinden sich zwei Buchsen für das Datenkabel, die identisch belegt sind. Die freie Buchse dient der Möglichkeit, auch noch andere Einrichtungen für die Datenerfassung anzuschließen oder gegebenenfalls auch alternativ andere Daten für die Übertragung mit dem Messverstärker einzuspeisen.

- Alle Verbindungen im Anschlusskasten sind Klippverbinder, so dass für eine eigene Konfiguration die Anschlüsse leicht umgeändert werden können.


Der Messverstärker mit Sender wird versorgt über einen Lithium Akkumulator 3.7 V\(^10\). Die Einspeisung vom Akku erfolgt über einen Standardstecker, dessen Anschlüsse (rot/bräun) aber nicht direkt zum Akku führen. Der Akku dient als Puffer für die Speisespannung 5 V von der

---

\(^9\) Der zugehörige Link: [https://www.me-systeme.de/shop/de/elektronik/gsv-4/gsv-4bt](https://www.me-systeme.de/shop/de/elektronik/gsv-4/gsv-4bt)

\(^10\) Li-Ion Akku 3.63V 2600mAh, 9.62 Wh – 1S1P ICR18650-26: [https://www.batt-energy-shop.de](https://www.batt-energy-shop.de)
5. Überprüfen und Eichen der Windkanalwaage

1. Empfindlichkeit der Kraftsensoren


Die beiden nachfolgenden Bilder zeigen die Wägeeinrichtung ohne und mit Gewichten von jeweils 2 kg, die hier die vorgesehene Nennlast von \( F_S = 20 \text{ N} \) knapp erreichen. Die von den Gewichten ausgeübte Kraft beträgt \( F = 19.6133 \text{ N} \). Die Gewichte stehen auf der Halterung für den Support, der im Messbetrieb seinerseits das Messobjekt trägt.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Nullsignal ([\text{mV/V}])</th>
<th>Kennwert (k_S) ([\text{mV/V}/F_S])</th>
<th>Widerstand ([\Omega])</th>
<th>Skalierungsfaktor (f_S) ([\text{N}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>18100053</td>
<td>-0.0218</td>
<td>0.5016</td>
<td>481.45</td>
<td>79.7448</td>
</tr>
<tr>
<td>18100054</td>
<td>0.0133</td>
<td>0.5033</td>
<td>425.18</td>
<td>79.4755</td>
</tr>
</tbody>
</table>

Die Sensoren haben folgende Eigenschaften laut Prüfprotokoll:


Der Kennwert $k_S$ beschreibt die Empfindlichkeit des Kraftsensors und ist definiert als die Brückenspannung des Kraftsensors bei Nennlast und je Volt Brückenspeisung $U_s$. Deren Wert beträgt beim Messverstärker GSV-4BT $U_s = 2.5 \text{ V}$.

**Zahlenbeispiel**: Bei einer Nennkraft von 20 N und einem Kennwert $k_S = 0.5 \text{ mV/V}$ ergibt sich eine Brückenspannung $U_D$ von 1.25 mV. Eine Nachmessung bestätigt diesen Wert im Rahmen der Messgenauigkeit des verwendeten Spannungsmessers.

- Ist einmal die OK/Set-Taste gedrückt, dann wird der Skalierungsfaktor berechnet und beim nächsten Aufruf des Fensters erscheint nur noch der Input Range. Dann darf man nicht erneut die OK/Set-Taste drücken.

Der Skalierungsfaktor $f_S$ ist der Quotient aus der Eingangsempfindlichkeit $s_M$ des Messverstärkers und dem Kennwert $k_S$

$$f_S = s_M / k_S; \text{ in Zahlen } f_S = (2 \text{ mV/V}) / (0.5 \text{ mV/V/20 N}) = 80 \text{ N}$$

Die tatsächlich dargestellten Zahlen weichen von dem vereinfachten Beispiel etwas ab. Wechselt man die Eingangsempfindlichkeit auf 10 mV/V, dann vergrößert sich der Skalierungsfaktor um das Fünffache auf 400 N:

Nachfolgend sind die Daten der beiden Sensoren zunächst bei einer Messfrequenz $f = 125 \text{ Hz}$ aufgezeichnet worden für die beiden unterschiedlichen Eingangsempfindlichkeiten. Es zeigt sich dabei, dass die Werte für 10 mV/V um einen Nullwert schwanken, der etwas höher ist als der

**Messung mit Eingangsempfindlichkeit 10 mV/V:**

![Graph 1](image1)

**Messung mit Eingangsempfindlichkeit 2 mV/V:**

![Graph 2](image2)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Nullsignal [mV/V]</th>
<th>Gemessen bei 10 mV/V</th>
<th>Gemessen bei 2 mV/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>18100053</td>
<td>-0.0218</td>
<td>-0.0475</td>
<td>-0.0213</td>
</tr>
<tr>
<td>18100054</td>
<td>0.0133</td>
<td>0.0305</td>
<td>0.0061</td>
</tr>
</tbody>
</table>

Werden nun die eingangs abgebildeten Gewichte aufgesetzt, so ergibt sich keineswegs eine Übereinstimmung zwischen den Werten. Die nachfolgende Bildserie zeigt verschiedene Aufsetzversuche, die so gut wie möglich durchgeführt wurden. Vorab die Ergebnisse bei \( k_s = 2 \text{ mV/V} \):

<table>
<thead>
<tr>
<th>Sensor Soll 19.6133 N</th>
<th>Anordnung 1 Mittelwerte</th>
<th>Fehler %</th>
<th>Anordnung 2 Mittelwerte</th>
<th>Fehler %</th>
</tr>
</thead>
<tbody>
<tr>
<td>18100053</td>
<td>19.648</td>
<td>+0.18</td>
<td>19.620</td>
<td>0.03</td>
</tr>
<tr>
<td>18100054</td>
<td>19.920</td>
<td>+1.56</td>
<td>19.910</td>
<td>1.51</td>
</tr>
</tbody>
</table>
Messung mit Anordnung 1: 2 kg Gewicht bei A+W, zusammengesetztes Gewicht 2 kg bei W.

Messung mit Anordnung 2: 2 kg Gewicht bei W, zusammengesetztes Gewicht 2 kg bei A+W.

Nun ist die **Messfrequenz von 125 Hz auf 25 Hz herabgesetzt** worden. Die Signale rücken deutlich zusammen. Mit $k_3 = 2 \text{ mV/V}$ die Messung nach Anordnung 1:
Messung nach Anordnung 2:

![Sensor Anordnung 2 Messung](image)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Anordnung 1 Mittelwerte</th>
<th>Fehler %</th>
<th>Anordnung 2 Mittelwerte</th>
<th>Fehler %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soll 19.6133 N</td>
<td>19.784</td>
<td>+0.87</td>
<td>19.796</td>
<td>+0.93</td>
</tr>
<tr>
<td>18100053</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18100054</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Messprinzip als Basis der Bestimmung der Genauigkeit der Waage

Die Eichmessungen erfolgen mit eingesetztem Support und Messobjekt. Das nachfolgende Bild zeigt die verwendete Konfiguration.

![Sensor Anordnung 2 Konfiguration](image)

- Im theoretischen Idealfall liegen die Messwerte auf einer Linie. Die Abweichung gibt den Fehler der Waage im Messbetrieb an.

3. Genauigkeit der Waage


- Die erwarteten Messwerte müssen exakt der jeweiligen Last entsprechen, die mit Eichgewichten von hoher Genauigkeit erzeugt wird.

Für die Auswertung sind jeweils Daten von 200 Messwerten gemittelt worden, die mit einer Messfrequenz von 25 Hz aufgenommen worden sind.

- Im praktischen Messbetrieb muss man davon ausgehen, dass die Messergebnisse mit einem Fehler von bis zu $+/-2.5\%$ behaftet sein können.


Die Nummern der Messungen sind für Zwecke der internen Dokumentation aufgeführt.
Genauigkeit der Waage mit dem Messverstärker GSV-4BT, Seriennummer 1516304.

Theoretisch müssen die Messwerte identisch sein mit der horizontalen Kraft.
6. Anlagen

1. Separate Anleitungen
   - Motorsteuerung UNIcon und die
   - Waagen Kern 440-45N
   - Kern Balance Connection

liegen als separate Dokumente gedruckt und auf CD vor.

Auf der CD sind u.a. die beiliegenden Dokumente enthalten:

2. Verzeichnis mit Installationssoftware auf CD
   - KernSoftware auf separater CD
   - Steuersoftware für den Sensor EE75

3. PDF Dateien auf CD

   DPG07_DD_16_3_Send
   Kurzanleitung_UNIcon_MODBUS_Master_2013-11-11_DE_de
   KernWaage 440-BA-d-0941-1
   Ziehl-Abegg_Motor_FE2owlet-ECblue_FN030_420W
   Betriebsanleitung_UNIcon_MODBUS_Master_CXE_AVE_CXG-24AVE_2015-03-09_DE_de

   ■ ■ ■ ■